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Abstract We have developed a model of a random alloy based on a simplified single-@- 
type-)bmd model of a solid introduced by Andenen to demonstrate the screening of orbitals in 
the LMTO formalism. To this model we have applied the coherent-potential approximation in the 
LM-IUS put forward by Kudmovsky el  al. The electronic densities of state8 calculated showed 
interesting faNreS similar to those found in realistic calculations. for all types of disorder 
considered. namely purdy diagonal. bath diagonal and off-diagonal, and purely off-diagonal. 

1. Introduction 

During the last decade or so the linearized band method for the muffin-tin orbital (MTO) 
description, namely the linearized-muffin-tin-orbital (LMTO) method, has become an efficient 
first-principles band-structure method (Andersen and Jepsen 1977, Skriver 1984, Andersen 
elal 1985, 1986, 1987, Skriver and Rosengaad 1991, Andersen 1992). A tight-binding (TB) 
scheme may be constructed in this formalism where we shall see later that the Hamiltonian is 
expressed in terms of, firstly, the potential function which describes the scattering properties 
of the atoms and which is a function of parameters specifying the band centre (resonance 
energy), band width and band shape and secondly. the structure factor mahix which is 
dependent on the geometry. The original infinite-range MTOS can be linearly transformed 
or in other words screened by MTOS from neighbouring sites, thus leading to short-ranged 
MTOS and a TB type of description. 

A simple single-(s-type-)band model with a spherical Brillouin zone was introduced by 
Andersen (1992). We have developed a simple model of a substitutional binary random 
alloy based on this model by choosing random band positions and random band widths 
which are analogous to site energies and hopping in the Anderson TB model and applied 
to it the coherent-potential approximation (CPA) in the TB LMTO formalism developed by 
Kudrnovosky and co-workers (1985, 1990). Indeed the numerical results obtained for the 
density of states (DOS) show many features similar to that found by Kudrnovsky and co- 
workers (1985, 1990) for realistic systems. We have presented the calculations for both wide 
(i.e. free-electron-type) bands and nmow (i.e. d-type) bands in transition metals and the 
effects of randomness in both band positions and band widths show many distinct features 
in the alloy DOS. In addition we have also discussed the novel band shape disorder within 
the framework of our model. 
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2. Formalism 

2.1. Hamiltonian and Greenfunction in the TB W formalism 
In the following we discuss briefly the TB LMTO atomic sphere approximation (ASA) mainly 
to introduce notation and basic equations. A screened MTO set may be obtained by linearly 
combining the envelopes of the conventional MX)s into a short-ranged basis set. The 
energy-independent MTO in such a screened representation is given by 

A Dutta and P K Thakur 

X ; L ( " R )  =@RL(rR) + x'&(rR)h$L,,RL + K;:(rR) 

&L(rR) = d'RL(rR) + @RL(rR)O:L. 

( 1 )  
R'L' 

in the K* = 0 envelope set used by Andersen et a1 (1986). In (I), 
(2) 

The symbol (Y here represents the elements of the diagonal matrix [ ( Y R L ]  defining the MX) 
representation and its meaning will be clearer later. Here @RL(rR) = @RL(IrRI)YL(rR) where 
rR = r - R, T R  = rR/IrRI is the solution of the scalar relativistic Schradinger equation for the 
spherically averaged one-electron solid state potential VR(rR) determined within the density- 
functional theory and calculated at a suitable energy. dRL(rR) is the energy derivative at the 
same energy. u:L is the overlap of @ R L  and &,; U:, = ( @ R L / @ & ) .  The matrix h:,,R,L, is 
chosen in such a way that the wavefunction is continuous and differentiable at each sphere 
boundary. Its explicit form is 

(3) 
The cn, AO, ooL are the so-called potential parameters which are expressible in terms of 
the potential function P'(E) in the or-representation as previously mentioned (Andersen et 
ul 1986). S;,,,,,,, are the matrix elements of the structure constant matrix. The potential 
function in the screened representation ff and the conventional potential functions P,&(E) 
are connected by 

(4) 
P i L ( E )  are directly proportional to the cotangents of the phase shifts related to the solid 
state potential potentials VR(rR) in a sphere at R and can be parameterized over a broad 
range of energies in terms of the potential parameters, the band centre C R L ,  the band width 
A R L  and the band distortion Y R L  of the pure RL bands: 

h:,.,,,, = (cnRL - E U ~ ~ ) B ~ , ~ S ~ , ~  + (A~.U)1'2S~~L~,RL(A~L)"Z. 

J ' ~ L ( E )  = @,(E)[1  - ~ ~ R L P ; L ( E ) I - I .  

The potential parameters C ,  A and y via P" and Po characterize the scattering properties 
of atoms on the lattice sites. The simple relation between potential functions of the two 
screened representations is given by 

P;L(E) = J ' !L(E) [~  - ( ~ R L  - ~ ' R L ) P ! L ( E ) I - ' .  (6) 
As noted earlier, the geometry of the lattice enters through the structure constant matrix Su 
which is in turn expressed via the canonical structure constant (Andersen et al 1985, 1986) 
So as 

S;L,R'L,  = [so(l - (Yso)-']RL.RfL,. (7) 
The elements Si,,,,,, depends only on R / w  and R'lw, where R and R' are atomic 
positions and w is the average WignerSeitz (ws) radius. Si,,,,,, decay as (w/d)'+''+' 
where d = IR- RI, and is thus long ranged for low f-values. The screen structure matrix 
elements decay as exp(-A;.d/w) with A;, dependent on the choice of the representation or. 

Two screened representations are of particular importance. 
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(i) The orthogonal or y-representation has CXRL = y~,  the band distortion parameter in 
which the MTO set is orthonormal (if one neglects some small terms (Andersen et a l  1986)). 

(ii) The most localized &representation has screening parameters given by @$ = 0.3485, 
pp = 0.0530 and B,j = 0.0107 yielding the fastest and almost monotonic decay in real 
space. Sfl almost vanishes beyond the second-nearest neighbour for close-packed lattices 
and consequently the X{, are highly localized in space. If in (5) we set 01 y 
representation-wise we obtain two very useful equations in this work 

,9 and p 

Indeed this description is appropriate for a TB type of description. We shall now 
introduce the expressions for the Hamiltonian and one-electron Green function (GF) in 
this representation. In the ASA, the MT spheres are replaced by slightly overlapping 
spacefilling ws spheres so that the interstitial region is left out. The Hamiltonian 
H!L,R,L, = ( x i L [  - V2 + V ( r ) l ~ { , ~ , )  and overlap O$L,R,L, = (x$lx{ , , . )  in the ASA 
are obtained 

with the contribution from the interstitial part being omitted. The quantity of prime interest 
for a model of random alloys is the one-electron GF as any quantity of interest may be 
determined from it. 

where z = E +iot (Ot is a small positive quantity giving 
a small imaginary p a l  to the argument), we first introduce the GF in the y-representation: 

(12) 
-I/’ G ; , , , , , ( z )  = ( z i  - H”)&,L, = ARL”([PY(z) - S Y ] - l ) ~ ~ , ~ , ~ , A R f L , .  

Here i is the unit operator, z is the energy in the complex plane and PY(z)  = ( z  - C)/A is 
the potential function in the MTO representation y ,  Using the simple relation between GFs 
of various MTO representations in the ASA, G ( z )  in the p-representation is 

To introduce the 
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2.2. Coherent potential approximation in the TB LMTO ASA 

etc, are site-diagonal quantities and in 
the case of a binary substitutional alloys they randomly assume the values characteristic of 
the two constituents with probabilities proportional to the concentrations of the respective 
constituents. 

Kudrnovsky and co-workers (1985, 1990) performed the configuration averaging of the 
GF in the @-representation (equation (13)) within the CPA. The expression for the coherent 
potential function Pf(z) is obtained from a pair of coupled CPA equations as 

P!(z) = (PLB(z)) + [PfA(z) - ~ f ( z ) l ~ ~ ( z ) [ P f B ( z )  - Pf(d1 

A Datta and P K Thakur 

In the above the quantities Pf(z), Af(z), p L ( z ) .  B 

(17) 

B S;,,(k) is the Bloch transform of S,,,,,,,. For the random alloy, 

where Q = A, B (say) are the constituents of the binary alloy, and the summation in (19) is 
a summation over the constituents with cQ being the concentration of the constituent. Also 

& Q ( Z )  = q g ( Z ) ( l  + [ P f Q ( z )  - Pf(z)l@;(z))-l. 

(G)RL.RL = C c Q P ” ‘ ( ~ ) + t Q ( ~ ) .  (21) 

(20) 

The configuration-averaged GF is given by 

Q 

From (21) the alloy density of states is obtained by the standard formula -(l/n)Im((G)); 
the component DOS for each alloy is thus obtainable as 

- ( l / ~ ) I m [ P f ~ ( z ) & ~ I  for Q s A or B. (22) 

We note from (8) and (9) that P,+(E) and PfQ) have poles at the energies E L  = 
CL - A L / ( ~ L  - @ L )  and at these energies the expression for the DOS will be singular 
and constitute spurious &functions. One has to take care when making CPA calculations to 
have these poles outside the bands. 

2.3. The spherical solid model and s-type screening 

To illustrate the idea of screening of m s ,  Andersen introduced a simple single-(s- 
type-)band model of a solid with sites on a lattice with translations T and the same 
background phase shifts for all sites. The screening is done up to the s level, i.e. with 
monopoles only. By Bloch summation of bare structure constants we obtain in the k-space 

exp(ilc. T)UWCOS(KT) 
K T  

S(Kz, k) = - ~~ 

T d  
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A simplifying assumption is made by considering the Brillouin zone (Bz) to be 
spherically symmetric, whence it becomes a sphere of radius b = ( 9 ~ / 2 ) ’ ’ ~ w - * ,  where 
w is the ws radius of the solid. Further the G = 0 term in (24) is approximated by a 
k-independent constant in the BZ. The resulting model structure constant is approximately 

+ p g  3 (g)] for k < b. 

The k-independent function 3b-’g(~’/b’) can be determined in such a way that, as required, 
the integral of S(K’, k) in the BZ vanishes. It is thus possible to define g(Kz/b2)  for complex 
K’ in such a manner that g is an analytical function in the circle K *  < b2 with the circle 
K’ = b2 being a branch cut, and g is another analytical function outside the branch cut. On 
the real axis, g is always decreasing from -b2 to bZ with g(-1) = 1 + in, and g(0) for 
K~ = 0 equals 1. It is negative from K’ = 0.59b2 and tends logarithmically to --oo when 
K’ -+ bZ. By choosing CY(K’) so that l/@) traces a little above 3 g ( ~ ~ / b * ) ( l / b ~ ) ,  i.e. 

C Y ( K ’ )  E ( 6 / ~ ~ ) [ 6 ( ~ ~ / b ~ )  + (3 /bZ)g(~*/b2)]  (26) 

then the k zeros of 

S(K’, k) - CY(K’)-’ = 

move off to ko(Kz) = kz - 1 / [ S ( ~ ~ / b ~ ) ] ” ~ .  So for positive and sufficiently high 6, ihese 
zeros are imaginary so that the screened structure constant is localized in real space. If 
6 + A 2 )  with A real, i.e. 

CY(K2) E W2 [’+ K2+hz (:>’&?($)I 
then ko = h i l o  which is independent of IC’, and the screened structure matrix is 

having simple poles at ko = f ih  and as a function CZ(K’) is analytical in I K ’ ~  < bZ. In real 
space it decays almost like exp(-AIR - PI). For h -+ 00 the following simple expression 
for Sa is obtained: 

or@) = g(K2/b2)/0.325 (30) 

and 

= k 2 - K Z  S ” ( K ~ ,  k) + c r ( ~ ~ ) - ’  
( wZ/6)a ( ~ 2 ) - ~  

S‘(K’, k) f (U(K’)-’ = (k2 - K ~ ) ( W ~ / ~ ) L Y ( K ~ ) - ~ .  (32) 

A model of a substitutional binary alloy is constructed by us from this model by assuming 
random occupancy of the sites with the potential function having the form in (8) and the 



4712 A Dunu and P K Thukur 

screened structure constant having the form in (31). We have applied the formalism of 
Kudrnovsky and co-workers to the model. From (18) for spherical symmetry, we obtain, 
by converting the k-summation to a volume integral in k-space, 

= 4 n  A / B  ( 4 A B ) ‘ ” + 2 B b )  - 4 n -  [ (4AB)’I2 -2Bb + (4AB)’lZ i] 
where 

A = [P“ + 01-l + ~ ~ o r - ~ ( w ~ / 6 ) ]  

B = ( I I J ~ / ~ ) ( u ( K ~ ) - ’ .  

or and K were suitably chosen for the calculation. 

3. Results and discussion 

As noted earlier, care was taken during calculations to have the poles in Pa well outside the 
bands of all the constituents. The input parameters were C, A, y and the concentrations of 
the binary substitutional alloys of type GBJ- , ;  the first three have a very marked influence 
on the shape of the DOS. We have presented three single-component calculations of the 
DOS to emphasize this point. Figure I ,  broken curve, is a Dos calculated for C = 1.05, 
A = 0.5 and y = 0.24 which is found to rise to a sharp peak and resembles d-type states 
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m 
Figure 3. Shift of the band due to the change in C: - - -. CA = -1.5, AA = 0.25, yA = 0.4; -. CE = -0.5, AE = 0.25. y~ = 0.4. 

in transition metals. The shape of this DOS is similar to the form obtained by Kirkpatrick et 
a1 (1970) in the so-called ‘steeple model’ introduced by them to study the consequences of 
sharp smcture and overall asymmetry in the d states of transition metals. The DOS shape 
also closely resembles that obtained by Butler (1976) on the basis of the KKR phase shift 
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Figure 4. Purely diagonal disorder, the split-band case for (a) X A  = 0.5 = xg CA = -1.5, 
C~=-0.5.A=O.~andy=0.4,(b)x~=0.6,~~=0.4,C~=-l.5,C~=0.5,A=O.25 
and y = 0.4. (c )  X A  = 0.4, XB = 0.6, CA = -1.5. Ce = 0.5, A = 0.25 and y = 0.4. and ( d )  
~ ~ = 0 . 7 . ~ e = 0 . 3 , C ~ = - 1 . 5 . C ~ = - 0 . 5 , A = 0 . $ 3 n d y = 0 . 4  --,alloyooss:---, 
component A wss, . . . . . ., mmponent B Doss. 

analysis of d bands in transition metals. Figure 1, sokid cume, is for a different y-value 
(0.4) and is much wider than the broken curve. 

By increasing A we can increase the width of a band significantly as demonstrated in 
figure 2, broken curve, which has A = 0.25 and figure 2, solid curve, which has A = 0.5: 
the latter looks like a free-electron s-type band. This DOS is similar to the semicircular 
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Figure 4. (Continued) 

bands considered by Velicky (1969) to analyse the s-type bands in random metallic alloys. 
Finally we see the effects of alterations in C, the band centre parameter, in figure 3 

which show how a band becomes shifted from a different C. 
For our random substitutional binary alloy model we have considered four types of 

disorder: 

(i) diagonal disorder only, i.e. random C; 
(ii) off-diagonal disorder only, i.e. random A; 
(iii) both diagonal and off-diagonal disorders, i.e. random C and A; 
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20 

20 

Figure 5. C=) Diagonal disorder with considerable overlap between the constituent Bands for 
XA = XE = 0.5. CA = -0.5. CB = -0.05. AA = AB = 0.5. YA = ys = 0.4; -, dfoy 
DOS; - - -. componenr A DOS; . . , , , ., component B DOS. ( 6 )  Another case of purely diagonal 
disorder with good overlop for XA = XB = 0.5. CA = 1.25, CB = 0.35, A A  c Ae = 0.5, 
YA = y~ = 0.W. -, alloy DOS; - - -. component A DOS; . . . , . .. component B DOS. 

(iv) random band distortion parameter, i.e. random y .  

This is a novel feature obtainable in the TB LMTO ASA formalism. In actual calculations, 
we started for each energy value with the virtual-crystal approximation for P, i.e. PVCA = 
xAPA + x ~ P e ,  and the coherent-potential function was obtained by successive iterations 
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Figure 6. Purely off-diagonal disorder for (a) x = 0.5, CA = CB = - I ,  AA = 0.5, AB = 0.25. 
y~ = ye = 0.4, (b) XA = 0.6, XB = 0.4, CA = CB = -1. AA = 0.5, AB = 0.25, 
y~ = ye = 0.1. (c )  XA = 0.3, XB = 0.7, CA = CB = - I ,  AA = 0.5. AB = 0.25. 
y~ = y~ = 0.1 and ( d )  X A  = 0.7, XB = 0.3. CA = CB = -1. AA = 0.5, AB = 0.25, 
yA = ye = 0.1. 

with equations (17), (18) and (33) and finally equations (21) and (22). A small positive 
imaginary part of about 0.01 was given and fast convergence was obtained. The convergence 
was found to be slower in the vicinity of poles in P .  

Case (i), i.e. for random C only, is presented in figures 4(a)-(c). The constituent 
bands are widely separated with small overlap and the resultant alloy DOS using the CPA 
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I 

Figure 6. (Continued) 

is of split-band type. Note that in figure 4(u) for XA = 0.5 and x g  = 0.5 the alloy has 
almost symmetrically placed component DOSS, and the alloy DOS itself looks somewhat like 
a Lorentzian. However, the symmetry has largely disappeared in figure 4(b) for X A  = 0.4 
and x g  = 0.6, or in figure 4(c) for X A  = 0.6 and xs  = 0.4. In figure 4 ( 4  corresponding 
to X A  = 0.7 and xg = 0.3 the alloy DOS drastically changes shape and adopts the shape of 
the A-type component DOS with the emergence of a large impurity peak owing to the low 
concentration of B. 

This of course highlights the high sensitivity of the calculation to the changes in 
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D 

Figum 7. Both diagonal and off-diagond disorder for CA = -1.5. CB = -0.5. AA = 0.5, 
AB = 0.25, y~ = y~ = 0.4. XA = sg = 0.5. 

D 

Figure 8. Disorder in y for CA = CB = 1.05, YA = 0.4, ye = 0.24, A = 0.5. XA = XB = 0.5. 

concentration. In figure 5 the constituent bands have significant overlaps and as a result the 
alloy DOS exhibits much less splitting than in the previous case. For purely off-diagonal 
disorder in random A the results are even more interesting. In figure 2 we have shown 
the constituent DOSS of A and B. They have the same C, i.e. band centre, and thus strong 
overlap, but the width of one is twice that of the other. The alloy DOS in figure 6(a) has 
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X A  = XB = 0.5 and it has a splitting in the vicinity of the crossing of the two component 
DOSS. Neither of the component DOSS resembles the DOSS for pure A and B. We also note 
that the effective band width is in between the band widths of the constituents. The same 
features are more or less repeated in the alloy DOS for X A  = 0.4 and X S  = 0.6 in figure 6(b). 
For XA = 0.3 and xg = 0.7, figure 6(c) shows a sharp impurity peak in the vicinity of the 
band edge of B but, for XA = 0.7 and XB = 0.3 in figure 6(d), the shape is entirely changed, 
again highlighting the sensitivity of the calculations to the change in concentrations. It 
should be pointed out that in figure 6(c) and 6(d) we have not drawn any component DOSS 
because they would not show any marked change from those shown in figures 6(a) and 
6(b). The alloy DOS, however, show a significant change with variation in concentration 
from the two earlier cases. 

Figure 7 presents case (iii), i.e. both diagonal and off-diagonal disorder, where we 
see that off-diagonal disorder prevents the band splitting due to random C, by giving a 
broadened DOS although the component DOSS iiie markedly different from the alloy DOS. In 
figure 8 we present an interesting DOS arising out of random y .  A drastic change in the 
shape of the alloy Dos from the component DOSS (figure 1) is obtained. 

A Datra and P K Thakur 

4. Conclusion 

We thus see that the application of the TB LMTO CPA formalism by Kudrnovsky and co- 
workers to this simple model reproduces many features observed in realistic calculations. 
We have made an attempt to cluster generalize the single-site formalism of Kudrnovsky 
and co-workers with augmented space formalism (Datta et ~l 1993). Quite independently, 
Razee and Prasad (1993) have also developed a similar formalism. It will be of interest to 
apply this formalism to intuitive models such as this single-band model. 
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